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In this supplementary material, we provide more exper-
iment details for which we mentioned but did not have
enough space in the main paper. In the following sections,
we show detailed Canonical Correlation Analysis (CCA) re-
sults of visual and semantic space in Section 1, we give the
datasets summary and training details in Section 2, we pro-
vide the results using different word embedding in Section
3, we show more prototypes t-SNE visualization in Section
4, we conduct extra comparison with relevant methods in
Section 5, we further explain why using Hadamard product
in Section 6, and our advantage on computation complexity
in Section 7 followed by an extra discussion in Section 8.

1. CCA Results

As mentioned in §3.1 of the main paper, we apply
Canonical Correlation Analysis (CCA), which is trained on
base classes, to the visual features and semantic word em-
beddings of novel classes. More specifically, visual features
of base classes are extracted by the “ResNet-12” backbone
after being trained in the first training stage on minilma-
geNet [10], while the corresponding word embedding is de-
rived from the GloVe [0] pre-training model.

The detailed CCA results are shown in Table 1, where
the top rows show there is still a relatively high correlation
between visual and semantic space on novel classes, and the
bottom rows show when using the non-corresponding visual
and semantic data to train the CCA model the correlation
coefficient will be quite small which means the alignment
is not transferable anymore.

Actually, this same phenomenon can be also found in ex-
periments with varying backbones, datasets, and word em-
bedding models, which gives us solid evidence that seman-
tic knowledge can really help FSL tasks.

2. Datasets and More Training Details

In Table 2, we give a summary of datasets we used in the
experiments of the main paper (minilmageNet [10], tiered-
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Table 1: CCA results on minilmageNet. We train the CCA
on 64 base classes which is to find a mapping to maximize
the correlation of their visual space and semantic space.
This table shows the correlation coefficient calculated by
applying this trained CCA model on 16 validation classes
and 20 test classes respectively. For comparison, the bottom
rows show results when using non-corresponding visual and
semantic space to train the CCA mapping. “Corr.” denotes
the correlation coefficient.

CCA test | Corr.
Val cls. 0.58
Test cls. 0.79

Val cls. 0.19
Test cls. 0.38

CCA training

Base classes-
visual feature

Corresponding-
word embedding

Base classes-
visual feature

NonCorresponding-
word embedding

Table 2: Statistics of four few-shot learning datasets.

DataSet Train/Val/Test Instances Resolution
minilmageNet 64/16/20 60,000 84 x 84
tieredlmageNet | 351/97/160 779,165 84 x 84

CUB 100/50/50 11,788 84 x 84
CIFAR-FS 64/16/20 60,000 32 x 32

ImageNet [7], CIFAR-FS [1], and CUB [11]). They are all
common benchmarks for few-shot learning.

In addition to implementation details noted in §4.1 of
the main paper, here we provide more details. We adopt
an empirical learning rate scheduler following the practice
of [3,4, 12]. In the first training stage which is to train Fea-
ture Extractor, the learning rate is initially set to 0.1 and
then changed to 0.006, 0.0012, and 0.00024 at epochs 20,
40, and 50, respectively. Note that the learning rate mile-
stone for tieredImageNet is 30, 60, and 75 since we train
90 epochs on this larger dataset. As for the second train-
ing stage, we initially set the learning rate to 1.0, and then
change it to 0.5, 0.1, and 0.05 at epochs 5, 10, and 15,
respectively. Although we need to train different Seman-
tic Guided Attention Weight Generator and cosine classi-



Table 3: Results of different word embedding models on minilmageNet, tieredlmageNet, and CIFAR-FS. We report the
average classification accuracies (%) on 5000 test episodes of novel categories (with 95% confidence intervals). “FAKE”
means using the non-corresponding label as semantic guidance.

Sem minilmageNet tieredlmageNet CIFAR-FS
' S5Way 1Shot 10Way 1Shot 5Way 1Shot 10Way 1Shot 5Way 1Shot 10Way 1Shot
GloVe (ours) | 69.04+£0.26 52.71+0.15 72.18+0.30 56.82+0.21 76.24+0.25 61.77£0.17
Word2Vec | 68.10£0.26 51.12+0.15 71.85+0.30  56.96+0.21 75.25+0.26  60.02+0.18
NO 62.81+0.27 46.73+£0.17 68.55+0.31 54.014+0.21 67.78+0.30  53.32+0.21
FAKE 59.04£0.27 43.58+0.16 64.64+0.31 50.07+0.21 63.27£0.29  48.66+0.19

(a) Before semantic attention

(b) After semantic attention

(c) After inverse semantic attention

Figure 1: t-SNE visualization testing on minilmageNet under 5-Way 1-Shot scenario. (a) and (b) are prototypes before (p©)
and after (a.®p°) performing the semantic attention. (c) shows the result when applying the inverse attention ((1—a.) @ p°).
The setting is in the same manner as Figure 4 of the main paper and the point color represents its category.

fier for different N-Way K-Shot meta-testing scenario, the
whole procedure is fast and efficient since Feature Extrac-
tor is fixed during the second training stage. The best model
is chosen based on the accuracy on the validation set.

3. Different Word Embedding Models

Note that apart from GloVe [6], there exist some other
word embedding models such as Word2Vec [5]. Word2Vec
is also trained on large corpus of text and the embedding has
300-dimension which is the same size as GloVe. In this sec-
tion, we adopt Word2 Vec as the semantic knowledge source
to verify the generalization ability of our proposed method.

Table 3 shows the results when leveraging different
word embedding models. The rows “GloVe (ours)”, “NO”
and “FAKE” exactly are the same results reported in Ta-
ble 1 of the main paper. As we can see, there is sig-
nificant performance gain whatever semantic knowledge
source is Word2Vec or GloVe (GloVe is slightly better than
Word2Vec and it is possibly because that GloVe is a count-
based model and captures more global co-occurrence infor-
mation than Word2Vec). They are both better than “No Se-
mantic” and way better than “Fake Semantic” which uses
the GloVe embeddings of fake labels to generate semantic
attention. The above phenomenon again verifies the gener-
alization and effectiveness of our proposed method.

4. More t-SNE Visualization Results

In the main paper, we show the t-SNE visualization in
Figure 4 which is the results for CIFAR-FS. Here we give

(a) Before semantic attention (5-Way 5-Shot)

(b) After semantic attention (5-Way 5-Shot)

Figure 2: t-SNE visualization of the prototypes in visual
space in 5-Way 5-Shot scenario. (a) and (b) are prototypes
before (p©) and after (a. ® p°) performing the semantic
attention. The setting is in the same manner as Figure 4 of
the main paper and the point color represents its category.

the results for minilmageNet in Figure 1 where the same
phenomenon can be observed that our SEGA does capture



Table 4: Extra comparison results of SEGA and AM3 on minilmageNet, tieredlmageNet, and CIFAR-FS. We report the
average classification accuracies (%) on 5000 test episodes of novel categories (with 95% confidence intervals).

Sem minilmageNet tieredlmageNet CIFAR-FS
' S5Way 1Shot 10Way 1Shot 5Way 1Shot 10Way 1Shot 5Way 1Shot 10Way 1Shot
SEGA (ours) 69.04+0.26  52.71+£0.15 72.18+0.30  56.82+0.21 76.24+0.25 61.77+0.17
AM3 in our framework | 64.29+£0.24 50.85+0.16  70.07£0.30  55.41+£0.20 70.34+0.26  58.32+0.17

the class-specific discriminative dimensions.

Furthermore, we also visualize the 5-Way 5-Shot sce-
nario to show why we can only get marginal improvement
when the number of shots becomes larger as noted in §4.4 in
the main paper. As we can see, the prototypes are already
quite stable when given 5 labeled samples per novel class
in Figure 2(a) compared to the 1-Shot scenario shown in
Figure 1(a). Although the prototypes become more stable
and discriminative after performing the semantic attention
as shown in Figure 2(b), the improvement of classification
accuracy is not as significant as in the 1-Shot scenario. The
reason is that when given more samples, the key feature di-
mensions can be learned and concluded much better which
means the prototypes are getting more precise. Therefore,
the key feature attention generated by semantic knowledge
is not as vital as in the 1-Shot scenario anymore.

5. Extra Comparison with AM3

In §4.4 of the main paper, we already show our ad-
vantage over other semantic using methods including AM3
[13], TriNet [2], and MultiSem [8]. Here we even adapt
AM3 to our framework for further fair comparison. The
origin AM3 is not compatible with our framework since the
performance drops dramatically (even no better than base-
line) after directly replacing weight in Eq4 with the seman-
tic prototype of AM3. So we adapt our classifier to Eu-
clidean space since the original AM3 uses Euclidean dis-
tance. As shown in Table 4, its results are still inferior to
SEGA, which further proves our advantage over AM3.

6. Why Hadamard Product for Attention

Hadamard product is chosen by our motivation which is
using semantic to guide visual perception about which key
features should be focused on. It is the most direct and suit-
able way to do feature selection and reflects method name
SEGA. But we still try element-wise addition and concate-
nation on minilmageNet to prove they are not better than
Hadamard Product:

Different semantic usages S5Way-1Shot  10Way-1Shot
Element-wise addition 67.18+£0.24  49.58+0.15
Concatenation attention 67.92+0.25  49.7740.14
Hadamard (ours results in Tablel)  69.04+0.26  52.71+0.15

7. Computation Complexity

SEGA comes with almost no more computation. The
extra time cost comes from the attention generation model
which is a simple MLP that can be ignored compared with
the embedding model.

The economical time cost is actually our advantage over
other SOTAs. DeepEMD [14], RFS [9], and SEGA all have
2 training stages. The first stage is common standard em-
bedding model training, so they differ mainly in the second
stage where SEGA only costs ~1hour [0.2second/training-
episode] while DeepEMD (solving costly Quadratic Pro-
grams) costs >%hours [30second/training-episode] and
RFS (self-distillation) costs ~2hours [0.2second/training-
episode] for SWay-1Shot minilmageNet under same server
and GPU.

8. Extra Discussion

In this section, we provide more discussion about our
method as follows.

1) What is the insight of this work?

Semantic guided attention is actually a kind of feature se-
lection and can highlight the key class-specific features and
minimize the impact of background noise and large intra-
class variation, which is rather important in the few-shot
scenario since the key challenge for FSL is incomprehen-
sive cognition of novel category.

2) Is it necessary to use semantic knowledge?

As we have shown in Figure 2 of the main paper, real-
world images often contain multiple objects of interest. If
not take the semantic label into consideration, even we hu-
man beings may get confused about what this novel cate-
gory exactly is especially in the circumstances where the
labeled samples are in dire poverty. However, compared
to the large scale of image annotation, semantic informa-
tion is always easier to be obtained. By leveraging semantic
knowledge, the meaning of the novel category can be more
clear. Besides, since semantic knowledge is indispensable
in the most relevant domain zero-shot learning, we argue
that when shot numbers are changed from zero to few, se-
mantic knowledge should also be very helpful.

3) Why does SEGA work? What does it suggest?

SEGA learns the mapping from semantic space to visual
space to generate attention over feature dimensions. Each
feature dimension can be regarded as an attribute thus the



attention is the class-specific importance of each attribute
when distinguishing this category from others. This map-
ping is transferable since similar kinds of objects always
share similar importance of attributes. In addition, the map-
ping is learnable because this mapping is much easier to be
learned than directly reconstructing the prototype from only
the word embeddings of class label. Furthermore, SEGA
suggests that finding out the key features accurately and ig-
noring the misleading noise is rather important in the few-
shot scenario.

4) Do we use transductive setting or train-val setting?

No. All of our experiments follow the commonly used
inductive setting, and we just use validation datasets for
model selection.

References

[1] L Bertinetto, J Henriques, PHS Torr, and A Vedaldi. Meta-
learning with differentiable closed-form solvers. Inter-
national Conference on Learning Representations (ICLR),
2019.

[2] Zitian Chen, Yanwei Fu, Yinda Zhang, Yu-Gang Jiang, Xi-
angyang Xue, and Leonid Sigal. Multi-level semantic fea-
ture augmentation for one-shot learning. /EEE Transactions
on Image Processing (TIP), 28(9):4594—4605, 2019.

[3] Spyros Gidaris and Nikos Komodakis. Dynamic few-shot
visual learning without forgetting. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
4367-4375, 2018.

[4] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and
Stefano Soatto. Meta-learning with differentiable convex op-
timization. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 10657-10665, 2019.

[5] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781, 2013.

[6] Jeffrey Pennington, Richard Socher, and Christopher D Man-
ning. Glove: Global vectors for word representation. In Con-
ference on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 15321543, 2014.

[7] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell,
Kevin Swersky, Joshua B Tenenbaum, Hugo Larochelle, and
Richard S Zemel. Meta-learning for semi-supervised few-
shot classification. In International Conference on Learning
Representations (ICLR), 2018.

[8] Eli Schwartz, Leonid Karlinsky, Rogerio Feris, Raja Giryes,
and Alex M Bronstein. Baby steps towards few-shot learning
with multiple semantics. arXiv preprint arXiv:1906.01905,
2019.

[9] Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenen-
baum, and Phillip Isola. Rethinking few-shot image classi-
fication: a good embedding is all you need? In European
Conference on Computer Vision (ECCV), pages 266-282.
Springer, 2020.

[10] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan
Wierstra, et al. Matching networks for one shot learn-

ing. In Advances in Neural Information Processing Systems
(NeurIPS), pages 3630-3638, 2016.

[11] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-
ona, and Serge Belongie. The caltech-ucsd birds-200-2011
dataset. 2011.

[12] Zeyuan Wang, Yifan Zhao, Jia Li, and Yonghong Tian. Co-
operative bi-path metric for few-shot learning. In ACM Inter-
national Conference on Multimedia (ACMMM), pages 1524—
1532, 2020.

[13] Chen Xing, Negar Rostamzadeh, Boris Oreshkin, and Pe-
dro O O Pinheiro. Adaptive cross-modal few-shot learn-
ing. Advances in Neural Information Processing Systems
(NeurIPS), 32:4847-4857, 2019.

[14] Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen.
Deepemd: Few-shot image classification with differentiable
earth mover’s distance and structured classifiers. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 12203-12213, 2020.



